双荧光素酶信号通路活性的定量检测方法
双荧光素酶技术可以用于定量检测信号通路活性的变化。以下是一般的步骤:
构建信号通路响应元件(RE):首先需要设计并合成一个感兴趣的信号通路响应元件(response element, RE),它是一段包含响应因子结合位点的基因启动子序列。该序列会在响应因子与其结合后,激活或抑制报告基因的转录。常见的响应因子包括激酶、转录因子等。
构建双荧光素酶表达载体:将报告基因连接到RE上,构建一个双荧光素酶表达载体。这个载体包括一个荧光素酶基因和一个Renilla luciferase基因,用于作为内参基因。
转染细胞:将双荧光素酶表达载体转染到某些特定的细胞系,其中常见的细胞系包括HEK 293、HeLa等。转染条件包括可以使细胞高效表达表达载体的转染反应体系、细胞密度、转染时间等。
不同条件下的处理:将细胞分为不同的处理组,例如对照组、药物处理组、基因敲除组等。针对某种信号通路,可以根据留下某种目的基因的表达上升或下降来判断活性。
检测荧光:在不同的处理组中加入Luciferase底物(如荧光素),与Renilla luciferase底物(如共轭甲基琥珀酸酯),然后分别测量发出的荧光强度。这两个荧光素酶产生的荧光强度比例可以用于计算相对报告基因的表达水平和信号通路活性的变化。通过对所有处理组的比较,可以推断该信号通路的激活或抑制程度。
双荧光素酶技术提供了一种灵敏、可定量且具有高通量的方法,用于检测信号通路的活性变化。这种方法可以用于研究信号通路调控的细节机制、开发新药物以及筛选生物活性小分子化合物等。
最新动态
-
09.08
双荧光实验怎么设计实验来确定转录因子与启动子的具体结合位点?
-
09.08
酵母单杂交实验遇到菌株污染噬菌体的情况,该如何应对?
-
09.08
外泌体中RNA的特点是什么?如何检测?
-
09.03
基因合成的长度上限通常是多少?目前已报道的最长人工合成基因/基因组是多少(如合成酵母染色体)?
-
09.03
未来siRNA合成技术的发展方向是什么?如何进一步降低成本、提高长链合成效率和修饰兼容性?
-
09.03
Western blot检测外泌体蛋白标志物的操作要点是什么?
-
09.02
多克隆抗体定制中,抗原类型(重组蛋白、合成多肽、小分子半抗原、全细胞)的选择依据是什么?不同类型抗原对定制成功率的影响如何?
-
09.02
化学法siRNA合成中,氧化步骤的作用是什么?氧化不完全会对siRNA的稳定性造成哪些影响?
-
09.02
基因合成与基因组编辑技术(如CRISPR-Cas9)的核心应用场景差异是什么?能否结合使用?
-
09.01
EMSA凝胶电泳迁移实验中,探针的选择有哪些关键要求?