gst融合蛋白沉降技术流程
GST融合蛋白沉淀技术(GST Fusion Protein Pulldown)是常用的蛋白质互作研究技术,用于检测和鉴定特定蛋白与靶蛋白之间的相互作用关系。以下是GSTpulldown融合蛋白沉淀技术的一般步骤流程:
构建GST-tagged融合蛋白:首先,在靶蛋白编码序列的N端或C端引入GST标签的编码序列。可以通过克隆、PCR扩增等方法将GST序列和目标蛋白的编码序列连接起来,生成GST-tagged融合蛋白。
表达和纯化GST-tagged融合蛋白:将GST-tagged融合蛋白的重组质粒导入细胞表达系统,如大肠杆菌。通过培养和诱导表达,使GST-tagged融合蛋白高效表达。接下来,使用亲和层析技术(例如,谷胱甘肽-Sepharose柱)纯化GST-tagged融合蛋白,去除非特异性的蛋白和杂质。
靶蛋白制备:同时,制备目标蛋白(靶蛋白),可以通过细胞培养、组织提取等方法获得目标蛋白。
GST pulldown实验:将纯化的GST-tagged融合蛋白与目标蛋白混合,形成复合物。然后,在实验条件下进行反应,使复合物发生相互作用。可以在合适的缓冲液中进行反应,并添加必要的辅助因子(如磷酸酯酶抑制剂、蛋白酶抑制剂等)来维持反应的适宜性。
GST沉淀:在GST pulldown反应完成后,使用谷胱甘肽-Sepharose柱等亲和层析柱进行GST沉淀。GST-tagged融合蛋白通过与柱子上的谷胱甘肽结合的特异性,使复合物被沉淀下来。非特异性的蛋白和杂质则会被洗脱掉。
蛋白分离和分析:将沉淀下的复合物进行洗脱,得到GST-tagged融合蛋白和与之相互作用的靶蛋白。可以使用SDS-PAGE电泳和Western Blot等方法,对复合物进行蛋白分离和分析,从而确定目标蛋白与GST-tagged融合蛋白之间的相互作用。
通过GST融合蛋白沉淀技术,可以实现目标蛋白与GST-tagged融合蛋白的特异性结合,用于研究蛋白质互作、信号通路及功能调控等方面的问题。
最新动态
-
09.08
双荧光实验怎么设计实验来确定转录因子与启动子的具体结合位点?
-
09.08
酵母单杂交实验遇到菌株污染噬菌体的情况,该如何应对?
-
09.08
外泌体中RNA的特点是什么?如何检测?
-
09.03
基因合成的长度上限通常是多少?目前已报道的最长人工合成基因/基因组是多少(如合成酵母染色体)?
-
09.03
未来siRNA合成技术的发展方向是什么?如何进一步降低成本、提高长链合成效率和修饰兼容性?
-
09.03
Western blot检测外泌体蛋白标志物的操作要点是什么?
-
09.02
多克隆抗体定制中,抗原类型(重组蛋白、合成多肽、小分子半抗原、全细胞)的选择依据是什么?不同类型抗原对定制成功率的影响如何?
-
09.02
化学法siRNA合成中,氧化步骤的作用是什么?氧化不完全会对siRNA的稳定性造成哪些影响?
-
09.02
基因合成与基因组编辑技术(如CRISPR-Cas9)的核心应用场景差异是什么?能否结合使用?
-
09.01
EMSA凝胶电泳迁移实验中,探针的选择有哪些关键要求?